A Paradigm in Nanocellulose Materials

- From nanofibers to nanostructured fibers -

Hiroyuki Yano
Research Institutes for Sustainable Humanosphere,
Kyoto University

The advantage of pulp: NSCF over CNC, CNF and BC is "cost"

\$20-100/kg

\$0.1-0.2/kg

A Paradigm in Nanocellulose Materials

From nanofibers to nanostructured fibers -

Optically transparent nanocellulose

Mechanical Reinforcement of Transparent Plastic

Nano Fiber

Optically Transparent FRP

A component less than one-tenth the size of the optical wavelength can eliminate scattering

Fibrillation by a Grinder

Preparation of Cellulose Nanofiber Composites

Cellulose Nanofibers: CNF

- Semi-crystalline extended chains
- ✓ Tensile strength:3GPa → aramid fibers

(Based on D.H. Page, F., El-Hosseiny J. Pulp Paper Sci. 1983)

✓ Young's modulus:138-141GPa (-200~+200)

(T. Nishino et al. J. Polym Sci., Part B, 1995, Proc.2nd Intn'l Cellulose Conf,2007)

✓ Thermal expansion coefficient : $0.1 \text{ ppm/K} \rightarrow \text{ quartz glass}$

(T. Nishino, Personal communication, 2004)

✓ High specific surface area

Wood Nanofiber

Bacterial Cellulose

	Density (g/cm³)	Light Transmittance ¹ (%)	CTE ² (10 ⁻⁶ °C ⁻¹)	E (GPa)	Tensile Strength (MPa)
Wood Nanofiber Composites	1.4	82.3	9.8	16.3	283
Bacterial Cellulose Composites	1.4	83.7	6.0	21.0	325

S. Iwamoto, et al., Biomacromolecules (2007)

¹600nm, ²20 ~ 150

Optically Transparent Cellulose Nanofiber Reinforced Composite

As strong as steel, as thermally stable as glass, and as bendable as plastics

Luminescence of an OLED deposited on the wood nanofiber-composite

Device structure

Y. Okahisa, et al., Comp. Sci. Technol. (2009)

A future FPD processing; Continuous "Roll to Roll"

R2R process: simple and inexpensive.

R2R processing enables the continuous deposition of functional materials such as semiconductor, transparent conductive films and gas barrier films on a roll of substrate.

A demonstration of production of OLED by R2R process

(GE, USA, Press Release, 13 March, 2008)

Transparent materials developed in Kyoto Uni.

Micro to Nano Structure of Crab

Schematic presentation of the exoskeleton structure of crustacean shell. (Ifuku, et al. Biomacro, 2009)

Crab shell powder, Red king

Demineralization (CaCO₃) by HCl

Deproteinization by NaOH

Pigment removal by ethanol

I. Md. Shams and Yano, 2009

(a) Light transmittance of the chitin powder reinforced acrylic resin sheet (thickness 190 μm, Powder content: 22wt%) and cellulose nanofibers reinforced acrylic resin sheet (thickness 100 μm and Fiber content: 60wt%).

Comparison of Micro to Nano structures

The transition from nanofibers to nanostructured fibers

 Encouraged by the transparent crab powder sheet, we undertook the preparation of optically transparent pulp-fiber composites.

Difficulty in the production of nanocellulose reinforced composites

Optically transparent pulp sheet

The pulp-fiber sheet was acetylated, with care taken to maintain a never-dried condition, and it was then dried and impregnated with acrylic resin.

Changes in transparency of acrylic resin impregnated paper Acrylic resin 100 90 CNF + resin Linear light transmittance (%) 80 70 **Surface fibrillation** 60 50 **Acetylation** 40 **Untreated Pulp** 30 20 **Before resin** After resin 10 impregnation impregnation 0 300 500 700 Wave length (nm)

X100 100μm WD 7.9mm	Thickness (um)	Fiber content (%)	CTE (ppm/K)	Linear Light Transmit. (%)	Total Light Transmit (%)
Acetylated surface fibrillated pulp	60	18.0	11.9	70.0	88.1
Acetylated pulp	100	26.0	8.30	54.1	87.8
Untreated pulp	100	28.5	3.64	43.7	87.0
Nanofiber ¹⁾	100	35-40	12.1	82.0	90.0
Resin ¹⁾	_	0	213.0	91.0	92.0
CTE:20-150					

Another example using NSCF

Chemically modified surface fibrillated pulp or Chemically modified NSCF

NEDO Green Sustainable Chemical Process Programs from 2009 to 2013

NEDO: New Energy and Industrial Technology Development Organization of Japan

Project Title

Development of high performance cellulose nanofibers reinforced plastics for automotive parts

Organizations: Kyoto University, Kyoto Municipal Institute, Oji Paper,

Mitsubishi Chemical, DIC, Seiko PMC

Advisers: Toyota Autobody, Nissan, Suzuki, Denso, Nippon Paint, Panasonic,

Japan Steel Works

Disintegration and well-dispersion of chemically modified pulp in HDPE,PP and PA12 during melt compounding

Chemically modified dry pulp

PE, PP, PA pellets + Additives

Twin screw extruder

Nanofibrillation & Compounding

Injection molding

Samples

X-ray tomography of injection molded samples

SEM Images

Chemically modified CNF reinforced PP

Chemically modified CNF reinforced PA12

Chemically modified CNF reinforced PA12 500 Polymer omposit 400 Deformation (µm) **Modified CNF/PA12** 300 **PA12** 200 100 0 40 0 20 60 80 100 Temperature (CTE (0-100 ppm/K 92 **PA12 Modified CNF/PA12 24** Aluminum alloy 23 49

Thank you very much for your kind attention!